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VALUES OF THE LEGENDRE CHI 
AND HURWITZ ZETA FUNCTIONS 

AT RATIONAL ARGUMENTS 

DJURDJE CVIJOVIC AND JACEK KLINOWSKI 

ABSTRACT. We show that the Hurwitz zeta function, ((v, a), and the Legendre 
chi function, Xv(z), defined by 

00 

((v, a) = , (k + a)v' 0 < a < 1,Re v > 1, 

and 
00 z2k+1 

XV(Z)-E (2k 1 IzII, < Re v > I with v = 2,3,4,..., 
k=0 2k? ) 

respectively, form a discrete Fourier transform pair. Many formulae involving 
the values of these functions at rational arguments, most of them unknown, are 
obtained as a corollary to this result. Among them is the further simplification 
of the summation formulae from our earlier work on closed form summation 
of some trigonometric series for rational arguments. Also, these transform 
relations make it likely that other results can be easily recovered and unified 
in a more general context. 

1. INTRODUCTION 

Consider the series 

( sin((2k+ 1)wrx) d cos((2k + 1)wrx) 

(1) Si,(x) 
= 

(2?1 and C,(x) 
S k?) Re v> 1. 

Observe that the definitions of S,(x) and C,(x) ensure the convergence of each 
of the series involved: both series converge uniformly for all real values of x when 
Rev > 1. C>(x) and S,(x) are even and odd in x, respectively, while 

(2) C (x) =-C (1-x) and S,(x) = S (1-x). 

Because of these properties, it is sufficient to calculate C>(x) and S,(x) over the 
range 0 < x < only. 

In practice, the series in (1) for v = 2, 3, 4,... are of particular interest. It is well 
known that S2,+1 (x) and C2,(x) are summable in terms of the Euler polynomials 
(see the equations in (10)). However, no simple summation formulae exist for S2" (x) 
and C2+l (X), which are usually expressed in terms of certain integrals or even a 
combination of integrals. 
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Numerical evaluation of S2, (x) and C2m+? (x) is difficult, and the problem has 
recently been addressed in some detail (see [1]-[4]). For the particular case when 
n = 1, Dempsey et al. [1] developed a procedure based on Plana's summation 
formula along with Romberg's method of integration, which significantly improves 
the convergence and accuracy in comparison with direct summation. Boersma and 
Dempsey [3] transformed S2n (x) and C2,+? (x,) into a rapidly convergent series well 
suited for their computation. In particular, computation for n = 1 was considered. 
Cvijovic and Klinowski [4] showed that when x is a rational, the series C>(x) and 
S,(x) in (1) can, in the general case, be summed in closed form in terms of the 
Hurwitz zeta function. In other words, numerical evaluation of these trigonometric 
series, when x is a rational, is transformed into the evaluation of the series of a 
rational function, which is much easier numerically. 

In this work we deduce that the Legendre chi function and the Hurwitz zeta 
function form a discrete Fourier transform pair. Among the formulae which are 
obtained as corollaries to this transform relation are the summation formulae found 
earlier for C> (x) and S, (x) at rational arguments, which are simplified further. 
Also, the relation makes it possible that other results can be easily recovered and 
unified in a more general context. 

2. THE LEGENDRE CHI FUNCTION 

AND THE DISCRETE FOURIER TRANSFORM 

Recall the definition of the discrete Fourier transform (DFT) [5, Chapter 8]. Let 
(ar) (r = 0, 1, ... , t-1; t > 1) be a periodic sequence of real or complex numbers 
with period t (ar+t ar for all r E No). Then, the discrete Fourier transform pair 
of the sequences (ar) and (a*) is defined as 

(3a) a* arW t-1, 
r=O 

where w - exp(i27r/t) 

t-1 

(3b) ar =EaS*w"', r =0, I, .. , t -1. 
s=O 

The first relation is known as the direct discrete Fourier transform, andithe second 
as the inverse discrete Fourier transform. We note that it is usually asserted that 
0 < r < t - 1 and 0 < s <t - 1, but r and s can be arbitrary integers (or residues 
modulo t). We shall also need the following equation known as the orthogonality 
relationship: 

t 
trf if r =s 

(4) Z w 
0 otherwise , s 0, 1, ... t-1. 

The Riemann and the Hurwitz zeta functions, ((v) and ((v, a), respectively, are 
defined by the series [6, pp. 19, 22] 

00 1I00 

(5) ((v) = E k and ((V,a) = Z(k), 0< a < 1,Rev > 1. 

It is evident that ((v) = ((v, 1). 
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The series 
00 2kz+1 

(6) Xv (z) kE lzl < 1,> Re 1, >- 1 

in the particular case when v = n = 2, 3, 4,..., is usually referred to as the Legendre 
chi function of order n [7, p. 283, Eq. A1.29. The theory of this and related 
functions is thoroughly covered in Lewin's standard text [7]. 

Having introduced all the definitions we need, we state the following theorem. 

Theorem (DFT pair of ((v, a) and x>(z)). Assume that t is a positive integer and 
set w = exp(i7r/t). Let ((v,a) and X>(z) be the Hurwitz zeta function and the 
Legendre chi function defined as in (5) and (6). Then 

(7a) ((v, (2s - 1)/2t) = t (2t)vx (Ws)Wr(2s=l) 1,2,... 

and 

(7b) Xv (W r) = (2t)v E ((v, (2s - 1)/2t)wr(28-1) r 1,... ,t. 
s8 1 

The formula in (7b) shall be derived first; i.e., it will be shown that the sequence 
(2t)VXV(Wr) is the inverse Fourier transform of ((v, (2s-1)/2t). We begin by noting 
that absolute convergence of the series 

exp[i(2k + 1)wrr/t] ___exp_2_k______r_t 
XI (W r) = E exp[(2k + 1) 

= -r exp[i2(k + 1)r/t] < r < t 
k= k=0 (k1) << 

is assured when Re v > 1. It is clear that the sequence of the numbers x (dr), and 
thus the sequence (2t)vX,(Wr), are periodic with respect to r with period t. 

Next, recall that for any a E Z, b E N there exist unique c, d E Z such that 
a bc + d and 0 < d < b (division law in Z). Here, this means that any (k, t) 
(k E No, t E N) uniquely determine the integers m and s such that k = tm+s, where 
m 0, 1, 2, ... and s 0, 1, ... , t - 1. Hence, it follows by absolute convergence 
that 

XV(Wro1 )WLor j 
t E exp[i2(tm + s + 1)7rr/t] Xv 

1:m~ sE [2tm + 2s + 1]"/ 

- j 
exp[i2(tm + s)wrr/t] 

m=0 s=l [2tm + 2s - 1]" 
I t 1 exp(i2m7rr) exp(i2s7rr/t) 

(2t)v E m=0 [m + (2s - 1)/2t]v 

which can be further simplified to 

Xv(W) W-r 

t oo 

eXp(i2s0rr/t) (2t)v 81 m=0 
[m + (2s - 1)/2t]v 

1 00 1 
(2)E3exp[i(2s - 1)wrr/t] E'[ 2 

s2t 1m+(s-1/tV 
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since exp(i2m7rr) = 1 (m and r are integers). In view of the definition of the 
Hurwitz zeta function in (5), the last double sum results in the required formula in 
(7b). 

We will now show that the relations in (7a) and (7b) form a discrete Fourier 
pair. Indeed, the substitution of (7b) into (7a) yields 

((v) (2s - 1)/2t) = Z(2t)VXV(Wr)Wr(281) 

r=1 

t t 

r= tE(v (21- 1)/2t) r(2s-1)/2t)Wr(2s-1) -r(2s-1) 
Z (v, (2s - 1)/2t) Z < r(2s)w r(2s) 

8=1 ~~~~~r= 1 

since by (4) we have 

t t ~~~t if r=s E r(2s-1) -r(2s-1) Z w 2rsw- 2rs = othrwise f 
r=1 r=1 0) otherwise, 

considering that w = w2. In this way, the proposed discrete Fourier transform 
relations in (7a) and (7b) are established for Re v > 1 and our theorem is proved. 

3. VARIOUS FORMULAE 

Recall that the Euler polynomial of degree n, denoted by En (x), is defined as 

(8a) 
En(z) = (k) 

Ek2 (x )n = 0, 1, 2 .. . 
k=0 

[6, p. 39], where the rational numbers Ek are the Euler numbers given by the 
coefficients in the power series 

(8b) cosht ZEkJ Itl < 7r/2. 
k=O 

Let S.(x) and C>(x) be the series defined in (1), then En(X) is represented by the 
following Fourier series [8, p. 805, Eq. 23.1.17 and 23.1.18]: 

(9a) C2n (X)= _( ) ,72n E2n -1(X)) 
4(2ni 1)! 

where 0 < x < 1 for n = 1, 2, 3, .. ., and 

(9b) S2n + 1(X) = T (( )12 E2n (X), 
4(2ni)! 

where 0 < x < 1 for n 1, 2, 3,..., 0 < x < 1 for n = 0. 
We now give several immediate consequences of our theorem for the relation 

between the Hurwitz zeta function ((v, a) and the Legendre chi function x>(z). In 
what follows, n and q are positive integers, p is a integer, and v is a complex number 
with Re v > 1. 
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First, in view of the definition in (6), we see that the infinite series Sv(x) and 
Cv(x) in (1) can be considered as the imaginary and real parts 

(10) Sv (x) = Im[xv (exp(ix))], C, (x) = Re[Xv (exp(ix))], 

of Xv (exp(ix)). Thus, the following summation formulae, 

(Il la) sv (p/q) (2) Z ((v, (2s - 1)/2q) sin((2s -1)7rp/q) 

and 

1q 
(Illb) Cl, (plq) = (21 E ((v, (2s - 1)/2q) cos((2s - 1)rp/q), 

which enable a closed-form evaluation of the series Sv(x) and C (x) in (1) for 
rational arguments (x -p/q with 0 < p < q), are readily available from (7b). 

Second, we have that the values of the Euler polynomial En(x) of degree n > 1 
at rational arguments (x = p/q with 0 < p < q) are given by 

(12a) E2n_l(p/q) = (-1)n4 (2n )2 

q 
(Z(2n, (2s - 1)/2q) cos((2s - 1)7rp/q) 
s=1 

and 

(12b) E2n(p/q) = (-I)n (2r(i)2!+l Z ((2s - 1)/2q) sin((2s - 1)7rp/q). 

These formulae are obtained by combining (9a), (9b) and (Ila), (llb). 
Third, in view of (10), the formula in (7a) can be rewritten as 

(13a) 
q q 

((v, (2p - 1)/2q) = 2(2q)v'-1 Ze (r) + i12(r)) 2(2q)v'l Sb 
r=1 r=1 

q 

= 2 (2q) v-1 E, C (,r/q) cos((2p - I)-Frq) 
r=1 

q 

+ 2(2q)v-1 5 S,(r/q) sin((2p - 1)rr/q), 1 < p < q, 
r=1 

given that 

q q-1 

E 42(r) = 2(r) 0, 
r=1 r=1 

where 

D2(r) = Sv(r/q) cos((2p - 1)rr/q) - Cv(r/q) sin((2p - 1)rr/q), 1 < r < q, 

since, on making use of (2), we conclude that T2(q) = 0 and T2(q - r) = D2(q) 

(1 < r < q - 1). Moreover, putting 2q - (2p - 1) in (13a) instead of 2p - 1 results 
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in 

I(v, 1 - (2p - 1)/2q) 
q 

(13b) = 2(2q)v'1 E C,(r/q) cos((2p - I)wr/q) 
(13b) ~~~~r= 1 

q 

- 2(2q)v-1 Ej S>,(r/q) sin((2p - 1)7rr/q), 1 < p < q. 
r=1 

Finally, for 1 < p < q, the fourth set 

((v, (2p - 1)/2q) + ((v, 1 - (2p - 1)/2q) 

(14a) q 
- 4(2q)v-1 E Cl,(s/q) cos((2p - 1)wr/q), 

r=1 

((v, (2p - 1)/2q) - ((v, 1 - (2p - 1)/2q) 

( 14b) - 4(2q)v- 1 E S, (r/q) sin((2p - 1)7rr/q), 
r=1 

and the fifth set 
((2n, (2p - 1)/2q) + ((2n, 1 - (2p - 1)/2q) 

( 15a) (-l)n1r~2n (_ 2g) E E2n- l (r/q) COS ((2p - 1) 7r/q) , 

((2n + 1l (2p- 1)/2q) -((2n + 1,1 - (2p- 1)/2q) 

(15b) q 

(5)(-)n,2n+l(2q)2 EE2n(r/q) sin((2p - 1)7rr/q) 

of the formula follow at once from (13a), (13b) and (9a), (9b), respectively, in 
conjunction with (13a) and (13b). 

4. DISCUSSION AND SPECIAL VALUES 

It does not seem to have been noticed earlier that the discrete Fourier transform 
relation exists, which we have established in the above theorem, between the Le- 
gendre chi function and the Hurwitz zeta function. Also, we have failed to find in 
the literature our formulae given in (13a), (13b) through (15a), (15b), here easily 
obtained as corollaries. Recall, however, the following well-known relations [6, p. 
260, Eq. 6.4.7 in conjunction with Eq. 6.4.10] 

((2n + 1, x) - ((2n + 1, ) - x)2= 1)! cot(7rx)(21), 

((2n, x) + ((2n, 1- x) =(2n 1)! cot(1r)2-) 

which involve the derivatives of cot(7rx) and are valid when n > 1, 0 < x < 1. 
Observe that the problem of closed-form summation of the series S, (x) and C, (x) 

for rational x was settled in our earlier work [4, Equations 8 and 9], where various 
related special results were also established. Note, however, that a comparison of 
Equations 8 and 9 and the summation formulae in (Ila), (lib) above shows that (i) 
the formulae given in Equation 8 are more complicated than those in (1la), (1lb), 
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and (ii) the formulae in Equation 9 are derived on the assumption that p is odd 
and q even, while there are no such restrictions for (1la), (1lb). Finally, note that 
the formulae for the Euler polynomials at rational arguments in (12a), (12b) were 
deduced earlier [9, Theorem B]. 

To conclude, we give several illustrative examples. First, in view of [9, Eq. 12a] 

q 

, ((v, s/q) = q'((v), 
s=l 

the following relations hold: 

(16a) ((v, 1) + ((v, 4 ) = 2 -'(2Zv-l)((v), 

(16b) (j) + ((v 6) =(2 - 1)(3"-1)((v). 

Then, for instance, the formula in (lib) in conjunction with (16b) readily gives 

Cz,(1/3) =-CIJ(2/3) = (1/2)(2 - 1)(31-Z' - 1). 

Further, it is an easy exercise to verify the following well-known result [8, p. 803- 
806]: 

E2n-1(1/3) =-E2n-1(2/3) = (1/2n)(22n - 1)(31-2n _ -)B2n) 

where B2n are the even-indexed Bernoulli numbers B2n given by the Euler relation 

B2n = (-_ )n- 1 
2 

()2n)n 
I 

(2n) . (2w,) 

Indeed, starting from (12a) on making use of (16b) and the Euler relation we have 

E2n-1(1/3) = (_I)n4((2 )2-) 32I [(1/2)(((2n, 1/6) + ((2n, 5/6)) - ((2n, 1/2)] 
4(2r -)! 1n32 

l)n4(2n 
- 

1)! 1 (3/2)(222n -1)(32n-1 - 1)((2n) 
(2,) 2n 3272 

=(1/2) (2 2n_1)(31 -2n - 1)(_2)n4(2n - 1)! ((2n) 

(1/2n)(22n - 1)(31-2n _- )B2n. 

Finally, if n is a positive integer we have 

2((2n + 1 1) - 22 +1(22 +1-1)((2n + 1) + AE2n 4 Qn) 

2((2n + 1 3) 22n+1(22n+1 - 1)((2n + 1) + v'2E2n4 4 Qn , 

where Qn is given by 

Qn (_ ln (2wF)2n2+l 

2 (2r)! 
which follows at once on using (16a) and our formula in (15b). 
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